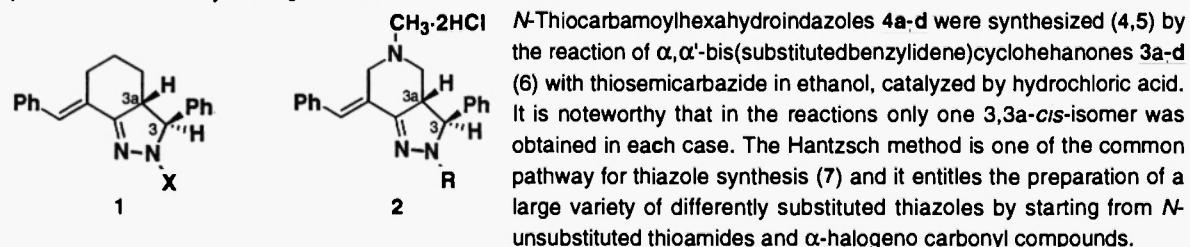
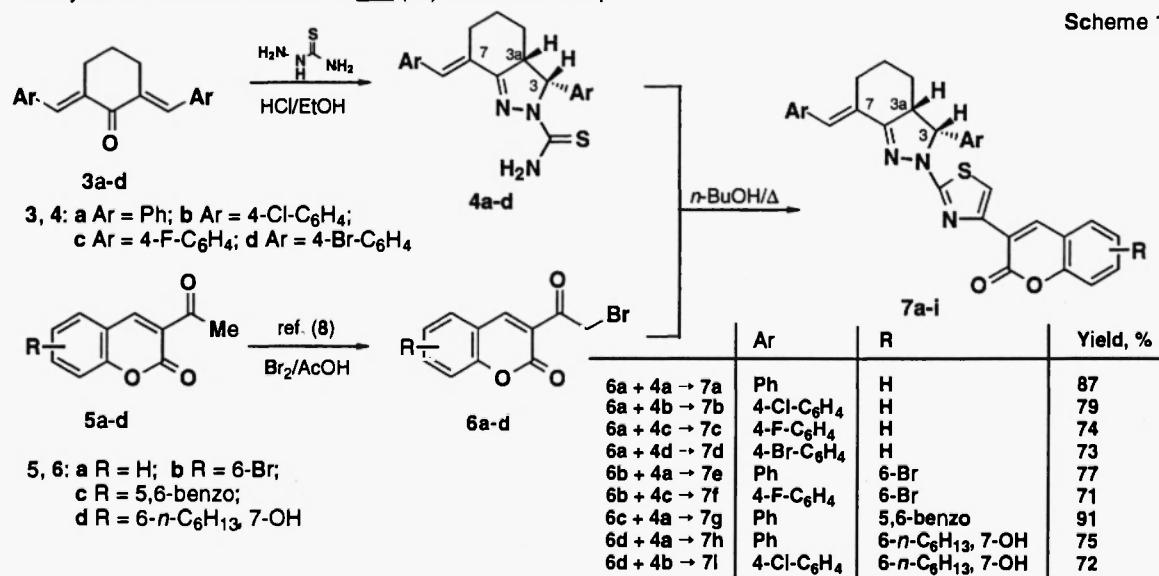


A FACILE STEREOSELECTIVE SYNTHESIS OF NOVEL HETEROCYCLES WITH HEXAHYDRO-2H-INDAZOLE, THIAZOLE, AND COUMARIN MOIETIES

Yaroslav V. Bilokon (Belokon),^{a1} and Ivan M. Gella^b


^a Department of Organic Chemistry, Ukrainian Academy of Pharmacy, 310002 Kharkov, Ukraine

^b Department of Organic Chemistry, Kharkov State University, 4 Svobody sq., 310077 Kharkov, Ukraine


Abstract: A series of novel 3-(2-(7-benzylidene-3-phenyl-3,3a-*cis*-3,3a,4,5,6,7-hexahydro-2H-indazol-2-yl)thiazol-4-yl)-2H-1-benzopyran-2-one derivatives **7a-i** have been synthesized stereoselectively by condensation of 3-(ω -bromoacetyl)coumarins **6a-d** with 3,3a-*cis*-7-benzylidene-3-phenyl-2-thiocarbamoyl-3,3a,4,5,6,7-hexahydro-2H-indazoles **4a-d**.

Dihydropyrazoles of type **1** and **2** have a wide range of biological activities (2), namely, they are central nervous system depressants, anti-inflammatory agents, fungicides, and bactericides. This type of compounds can be formed as 3,3a-*cis*- or *trans*-isomers or as a mixture in the reaction media but it is known (3) that the stereochemistry of biologically active compounds performs a significant role as far as drug-receptor interactions are influenced.

In the continuation of our studies (4) on the chemistry of dihydropyrazole derivatives, in this communication we wish to report on a facile stereoselective synthesis of novel 3,3a-*cis*-hexahydro-2H-indazole derivatives substituted at 2-position with heterocyclic fragments such as thiazole and coumarin.

3-(ω -Bromoacetyl)coumarins **6a-d** (8) obtained by bromination of 3-acetylcoumarins **5a-d** (9) were condensed in boiling *n*-butanol with *N*-thiocarbamoylhexahydroindazoles **4a-d** to form (Scheme 1) the corresponding 3,3a-*cis*-hexahydro-2H-indazole derivatives **7a-i** (10) substituted at 2-position.

It should be pointed that under reaction conditions no isomerization of *exo*-cyclic double bond into cyclohexane ring was observed as it was reported (4) before. 3,3a-*Cis* configuration assignments for the compounds **4a-d** and **7a-i** were corroborated (4,10,11) on the ground of the spin coupling constants $J_{H^3H^{3a}}$ which were in the range 10.8...11.2 Hz and it corresponds to the fact that values of $J_{H^3H^{3a}}$ (*cis*) are greater than those of $J_{H^3H^{3a}}$ (*trans*) and are in the region reported (4,11), namely, 10...14 Hz for the *cis*- and 3...10 Hz for the *trans*-isomers. The IR spectra of the compounds **7a-i** exhibited the characteristic C(5)-H thiazole stretching vibrations (12) with medium intensity in the region 3135-3145 cm⁻¹.

In summary, 3,3a-*cis*-hexahydro-2H-indazole derivatives **7a-i** substituted at 2-position with heterocyclic moieties such as thiazole and coumarin have been synthesized by condensation of 3-(ω -bromoacetyl)coumarins **6a-d** with *N*-thiocarbamoylhexahydroindazoles **4a-d**.

References and Notes

- (1) Present address: Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- (2) a) A. A. Bilgin, A. Yesilada, E. Palaska, R. Sunal, *Arzneim.-Forsch.* **42**, 1271 (1992); b) J. Krapcho, C. F. Turk, *J. Med. Chem.* **22**, 207 (1979); c) J. Krapcho, C. F. Turk, *Ger. Offen.* **2,521,299** (Cl. C07D), 27 Nov 1975. *Chem. Abstr.* **84**, 59455q (1976); d) J. Krapcho, C. F. Turk, *U.S. 3,931,169* (Cl. 260-240R; C07D), 06 Jan 1976. *Chem. Abstr.* **84**, 105588k (1976); e) J. Krapcho, C. F. Turk, *U.S. 3,926,968* (Cl. 260-240R; C07D), 16 Dec 1975. *Chem. Abstr.* **84**, 105586h (1976)
- (3) W. O. Foye, (Ed), *Principles of Medicinal Chemistry*. Philadelphia, PA : Lea & Febiger, 1974
- (4) I. M. Gella, Amadu Razak Yaya, G. V. Cherkaev, S. V. Fialkova, V. D. Orlov, *Khim. Geterotsikl. Soedin.* **1650** (1997)
- (5) All chiral compounds in this work are racemic; only one enantiomer of each pair is addressed to in the text and displayed in the structural formulas. All new compounds showed spectroscopic and analytical data consistent with assigned structures.
- (6) For new methods to synthesize α,α' -bis(substitutedbenzylidene)cyclohehanones **3a-d** (vs. acid or base-catalyzed cross-alcohol-type reactions), see: a) T. Nakano, T. Migita, *Chem. Lett.* 2157 (1993); and b) T. Nakano, S. Irfune, S. Umano, A. Inada, Y. Ishii, M. Ogawa, *J. Org. Chem.* **52**, 2239 (1987)
- (7) a) J. Metzger, *Thiazole and Its Derivatives*. In: *Chemistry of Heterocyclic Compounds*, New York: John Wiley, Vol. 34, 1979; b) J. Liebscher, *1,3-Thiazoles*. In: E. Schaumann, (Ed). *Methoden der Organischen Chemie*. 4th ed. Stuttgart: Georg Thieme Verlag, Vol. E8b, 1994; pp. 1-398. c) J. Metzger, *Thiazoles and Their Benzo Derivatives*. In: A. R. Katritzky and C. W. Rees, (Eds). *Comprehensive Heterocyclic Chemistry*. Oxford: Pergamon Press, Vol. 6, 1984; pp. 235
- (8) For general methods to synthesize 3-(ω -bromoacetyl)coumarins **6a-d** by bromination of 3-acetylcoumarins **5a-d** in acetic acid or chloroform, see: a) C. F. Koelsch, *J. Am. Chem. Soc.* **72**, 2993 (1950); b) P. Czerney, H. Hartmann, *J. Prakt. Chem.* **325**, 551 (1983); c) V. Rajeswar Rao, T. V. Padmanabha Rao, *Indian J. Chem.* **25B**, 413 (1986); d) ref. (9a)
- (9) For synthesis of 3-acetylcoumarins **5a-d**, see: a) Y. V. Belokon, S. N. Kovalenko, A. V. Silin, V. M. Nikitchenko, *Khim. Geterotsikl. Soedin.* **1345** (1997); and b) G. Jones, *Org. React. (N.Y.)* **15**, 204 (1967) and references cited therein
- (10) The ¹H NMR spectra of the compounds **7a-i** exhibited the following relevant signals: (400 MHz, DMSO-d₆) δ 5.87...5.91 (d, $J_{H^3H^{3a}} = 10.8...11.2$ Hz, 3-CH_{indazole}); 7.70...7.74 (s, 5-CH_{thiazole}) and 8.21 (s, 4-CH_{coumarin})
- (11) On synthesis and explicit stereochemical studies by NMR and X-ray of different dihydropyrazole derivatives, see: a) A. Hassner, M. J. Michelson, *J. Org. Chem.* **27**, 3974 (1962); b) T. Lóránd, D. Szabó, A. Fóldesi, L. Párkányi, A. Kálmán, A. Neszmélyi, *J. Chem. Soc., Perkin Trans. 1* 481 (1985); c) A. Yesilada, N. Gökan, A. Bilgin, M. Akaji, T. Shingu, T. Fujita, *Spectrosc. Lett.* **29**, 1481 (1996); d) O. Ergin, R. Sillanpaa, A. Yesilada, *Acta Crystallogr. Sect C* **52**, 1770 (1996); e) A. A. Khalaf, A. K. El-Shafei, A. M. El-Sayed, *J. Heterocycl. Chem.* **19**, 609 (1982); f) A. M. El-Sayed, A. K. El-Shafei, *Rev. Roum. Chim.* **38**, 1477 (1993)
- (12) A. Taurins, J. G. E. Fenyes, R. N. Jones, *Can. J. Chem.* **35**, 423 (1957)

Received on April 18, 1998